 |
| View previous topic :: View next topic |
| Author |
Message |
rynner2 What a Cad! Great Old One Joined: 13 Dec 2008 Total posts: 21365 Location: Under the moon Gender: Male |
Posted: 17-07-2010 09:57 Post subject: |
|
|
|
Nuclear fusion – what is it worth?
Experiments in fusion power have at last started to prove its viability. It would be foolish not to continue funding research
Steven Cowley guardian.co.uk, Friday 16 July 2010 16.30 BST
Fusion is arguably the perfect way to power the world. For one thing, there is enough fusion fuel to supply all of the world's energy needs for millions of years. Furthermore, it produces no environmentally damaging wastes, no carbon dioxide emissions and there could be no accidents that require evacuating the population surrounding a fusion power plant. Fusion plants would also not need significant land area, and fusion fuels (lithium and deuterium) are available in seawater. Unfortunately, it is hard to make fusion work. Indeed, after more than 60 years of fusion research, no device has yet made more energy than it consumes.
Iter, the next fusion machine and the first to be built as an international collaboration, is designed to demonstrate the scientific feasibility of net energy production. It is expected that Iter will produce about 500MW of fusion power – 10 times the input power. Just as importantly, it will show how to integrate the many cutting-edge technologies required for efficient and reliable future power station designs. Put simply, it is the big step needed to prove the viability of fusion as a commercial energy source.
Unfortunately, Iter's construction expenses have risen from about €5bn to over €13bn and the cost overruns have prompted some to question why chasing nuclear fusion is a priority. How sure are we that Iter will work? Could this money be spent more wisely in other areas of energy research, such as renewables or new fission? My answer is that fusion is more than desirable. It may be crucially necessary.
Burning coal, oil, or natural gas generates 80% of the world's primary energy. This simply can't continue much longer. Fossil fuels are diminishing resources, and burning them adversely affects climate and the environment. If we ask what energy sources could take over the role of fossil fuels, there are only three candidates with sufficient long-term resource: solar, nuclear fission with uranium or thorium breeders and nuclear fusion. Other sources will play important but lesser roles, for example wind may provide 10-20% of energy supply.
All three long-term options require substantial research and development before they are ready, or cheap enough, to be deployed on a large scale. None are certain to deliver everything so it would be foolish not to fund research on all three.
How likely is Iter's success? To make fusion we must heat a very hot gas (or plasma) of hydrogen-like fuels to temperatures 10 times those at the centre of the sun (100-200m degrees C) and hold it in place in a containment vessel using powerful magnetic fields. Experiments at the Joint European Torus (Jet) in the UK regularly achieve such conditions. Indeed Jet has produced 16MW of fusion power. So fusion works. Sophisticated computer simulations and empirical extrapolations from Jet and other machines predict that Iter will reach and perhaps exceed its target performance. If this is true then we could see following Iter with the first electricity-producing prototype fusion reactor by the end of the 2030s.
Is Iter worth the increased cost? Iter has to be large and technically advanced – and that comes with a big bill. Of the €13bn price tag (over 10 years), Europe, as host of Iter, pays 45% (around €6bn). The cost overrun in 2011/2013 will be €1.4bn. It has now been decided to redeploy funds to cover the gap from the overall European research budget.
For a commodity so vital to the way we live our lives, the €10bn spent yearly by the public sector worldwide on energy research is pitifully low – about 0.2% of the approximately €5tn world energy market. Compare this with the $20bn (€15.5bn) that BP has set aside to deal with all aspects of the Gulf oil spill. With this perspective Iter's cost seems appropriate. I would argue that the ultimate prize of commercial fusion power makes Iter a project well worth pursuing. Indeed, I would advocate increases in all areas of energy research worldwide, including renewables and fission.
Perhaps we will end up with many energy options – several belts and braces, too – but it is too early to tell. Let's do the research. We owe it to our grandchildren.
http://www.guardian.co.uk/commentisfree/2010/jul/16/fusion-power-research-funding |
|
| Back to top |
|
 |
Kondoru Unfeathered Biped Joined: 05 Dec 2003 Total posts: 5788 Gender: Unknown |
Posted: 18-07-2010 20:04 Post subject: |
|
|
|
| Ah, but can you get one that goes inside a tent? |
|
| Back to top |
|
 |
rynner2 What a Cad! Great Old One Joined: 13 Dec 2008 Total posts: 21365 Location: Under the moon Gender: Male |
Posted: 24-08-2011 09:26 Post subject: |
|
|
|
Long article:
Fusion power: is it getting any closer?
For decades, scientists have been predicting that, one day, the same process that powers the sun will give us virtually unlimited cheap, clean electricity. Are they wrong?
Leo Hickman guardian.co.uk, Tuesday 23 August 2011 21.00 BST
A star is born. And, less than a second later, it dies. On a drab science park just outside the Oxfordshire village of Culham, some of the world's leading physicists stare at a monitor to review a video of their wondrous, yet fleeting, creation.
"Not too bad. That was quite a clean one," observes starmaker-in-chief Professor Steve Cowley. Just a few metres away from his control room, a "mini star" not much larger than a family car has just burned, momentarily bright, at temperatures approaching 23 million degrees centigrade inside a 70-tonne steel vessel.
Cowley sips his coffee. "OK, when do we go again?"
Last year, when asked to name the most pressing scientific challenge facing humanity, Professors Stephen Hawking and Brian Cox both gave the same answer: producing electricity from fusion energy. The prize, they said, is enormous: a near-limitless, pollution-free, cheap source of energy that would power human development for many centuries to come. Cox is so passionate about the urgent need for fusion power that he stated that it should be scientists such as Cowley who are revered in our culture – not footballers or pop stars – because they are "literally going to save the world". It is a "moral duty" to commercialise this technology as fast as possible, he said. Without it, our species will be in "very deep trouble indeed" by the end of this century.
If only it were that simple. Fusion energy – in essence, recreating and harnessing here on earth the process that powers the sun – has been the goal of physicists around the world for more than half a century. And yet it is perpetually described as "30 years away". No matter how much research is done and money is spent attempting to commercialise this "saviour" technology, it always appears to be stuck at least a generation away.
Cowley hears and feels these frustrations every day. As the director of the Culham Centre for Fusion Energy, he has spent his working life trying to shorten this exasperating delay. Fusion energy is already a scientific challenge arguably more arduous than any other we face, but recent events have only piled on further pressure: international climate-change negotiations have stalled; targets to ramp up renewable energy production seem hopelessly unrealistic; and the Fukushima disaster has cast a large shadow over the future of fusion's nuclear cousin, fission energy, with both Germany and Italy stating that, owing to safety concerns, they now intend to turn their back on a source of energy which has been providing electricity since the 1950s.
But today Cowley seems upbeat, chipper even. After an 18-month shutdown to retile the interior of the largest of the centre's two "tokamaks" – ring doughnut-shaped chambers where the fusion reaction takes place – he is bullish about the progress being made by the 1,000 scientists and engineers based at Culham.
"By 2014-15, we will be setting new records here. We hope to reach break-even point in five years. That will be a huge psychological moment."
Cowley is referring to the moment of parity when the amount of energy they extract from a tokamak equals the amount of energy they put into it. At present, the best-ever "shot" – as the scientists refer to each fusion reaction attempt – came in 1997 when, for just two seconds, the JET (Joint European Torus) tokamak at Culham achieved 16MW of fusion power from an input of 25MW. For fusion to be commercially viable, however, it will need to provide a near-constant tenfold power gain.
So, what are the barriers preventing this great leap forward?
"We could produce net electricity right now, but the costs would be huge," says Cowley. "The barrier is finding a material than can withstand the neutron bombardment inside the tokamak. We could also just say damn to the cost of the electricity required to demonstrate this. But we don't want to do something that cannot be shown to be commercially viable. What's the point?"
At the heart of a star, fusion occurs when hydrogen atoms fuse together under extreme heat and pressure to create a denser helium atom releasing, in the process, colossal amounts of energy. But on Earth, scientists have to try and replicate a star's intense gravitational pressure with an artificial magnetic field that requires huge amounts of electricity to create – so much that the National Grid must tell Culham when it is OK for them to run a shot. (Namely, not in the middle of Coronation Street or a big football match.)
[...]
Last year, bulldozers began clearing land 60km north-east of Marseille in southern France. By 2019, it is hoped that the world's largest and most advanced experimental tokamak will be switched on. The €15bn International Thermonuclear Experimental Reactor (ITER) is being funded by an unprecedented international coalition, including the EU, the US, China, India, South Korea and Russia. Everything learned at Culham will be fed into improving the design and performance of ITER which, it is hoped, will demonstrate the commercial viability of fusion by producing a tenfold power gain of 500MW during shots lasting up to an hour.
But ITER's projected costs are already rocketing, and politicians across Europe have expressed concern, demanding that budgets be capped. Fusion energy also has its environmental detractors. When the ITER project was announced in 2005, Greenpeace said it "deplored" the project, arguing that the money could be better spent building offshore wind turbines. "Advocates of fusion research predict that the first commercial fusion electricity might be delivered in 50-80 years from now," said Jan Vande Putte, Greenpeace International's nuclear campaigner. "But most likely, it will lead to a dead end, as the technical barriers to be overcome are enormous." Meanwhile, there is criticism from some plasma physicists that the design of ITER is wrong and alternative designs might produce better results for much less money.
[...]
If fusion offers such glorious bounty, it prompts the question – given, say, our concerns over climate change and the global political instability caused by the pursuit of oil – why the world isn't concentrating much harder on delivering it as fast as possible. Yes, €15bn is a lot of money to be spending building ITER. But, by comparison, the global cosmetics and perfume industry is worth some $170bn a year. And, in 2010, the US's military budget was $663bn. If the motivation was there, the global community could find the money to fund 10 rival fusion projects to fast-track the process of finding the optimum design. So, why haven't we seen a Manhattan Project-style push for fusion such as we did during the second world war when it was deemed by the allied forces that they must beat the Nazis in the race to build the first atomic bomb?
"People – and particularly politicians – still remember fission's early claims that it would produce electricity that was 'too cheap to meter'," says Cowley. For most people, fusion is the realm of science fiction and it is hard to convince them that it should be a strategic priority, he says. "We scientists have to be honest, too: we thought it would be easy to crack fusion. But there's no other comparable challenge. There is no model for this technology. The first flying devices looked like birds because those early inventors looked to nature for solutions. But we don't have a model in nature to look to. The sun is not a good model for fusion here on earth. We're having to start from the very beginning."
[...]
...another big question: who will stand to benefit financially from its commercialisation? "The global energy market is worth $5-6 trillion a year: somebody will make a lot of money out of this," says Cowley, who predicts that once ITER provides a demonstration model for a fusion reactor all the major countries involved will then attempt to build their own version. "We handed our advantage away with fission. We really don't want to make the same mistake again." One area where the UK already has an edge, says Cowley, is making the very specialised steels required for next-generation tokomaks.
etc...
http://www.guardian.co.uk/environment/2011/aug/23/fusion-power-is-it-getting-closer |
|
| Back to top |
|
 |
Ghostisfort Great Old One Joined: 04 Jul 2009 Total posts: 770 Gender: Unknown |
Posted: 25-08-2011 08:50 Post subject: |
|
|
|
The only persons or organisations that could possibly benefit from a continuation of funding for - a failed for sixty years project - are the oil giants.
Everyone else loses.
The laughable suggestion that we should elevate failures to the pedestal of celebrity is just ridiculous enough to convince space-cadet hypnotics.  |
|
| Back to top |
|
 |
rynner2 What a Cad! Great Old One Joined: 13 Dec 2008 Total posts: 21365 Location: Under the moon Gender: Male |
Posted: 09-09-2011 08:01 Post subject: |
|
|
|
UK joins laser nuclear fusion project
By Jason Palmer, Science and technology reporter, BBC News
The UK has formally joined forces with a US laser lab in a bid to develop clean energy from nuclear fusion.
Unlike fission plants, the process uses lasers to compress atomic nuclei until they join, releasing energy.
The National Ignition Facility (Nif) in the US is drawing closer to producing a surplus of energy from the idea.
The UK company AWE and the Rutherford Appleton Laboratory have now joined with Nif to help make laser fusion a viable commercial energy source.
At a meeting this week sponsored by the Institute of Physics and held at London's Royal Society, a memorandum of understanding was announced between the three facilities.
The meeting attracted scientists and industry members in an effort to promote wider UK involvement with the technology that would be required to make laser fusion energy plants possible.
"This is an absolutely classic example of the connections between really high-grade theoretical scientific research, business and commercial opportunities, and of course a fundamental human need: tackling pressures that we're all familiar with on our energy supply," said David Willetts, the UK's science minister.
The idea of harvesting energy from nuclear fusion is an old one.
The UK has a long heritage in a different approach to accomplishing the same goal, which uses magnetic fields; it is home to the Joint European Torus (Jet), the largest such magnetic facility in the world and a testing ground for Iter, the International Thermonuclear Experimental Reactor.
But magnetic fusion attempts have in recent years met more and more constricting budget concerns, just as Nif was nearing completion.
Part of the problem has been that the technical ability to reach "breakeven" - producing more energy than is consumed in fusion reactions - has always seemed distant. Detractors of the idea have asserted that "fusion energy is 50 years away, no matter what year you ask".
But Mr Willetts told the meeting that was changing.
"I think that what's going on both in the UK and in the US shows that we are now making significant progress on this technology," he said. "It can't any longer be dismissed as something on the far distant horizon."
The laser fusion idea uses pellets of fuel made of isotopes of hydrogen called deuterium and tritium. A number of lasers are fired at the pellets in order to compress the fuel to just hundreths of its starting size.
In the process, the hydrogen nuclei fuse to create helium and fast-moving subatomic particles called neutrons whose energy, in the form of heat, can be captured and used for the comparatively old-fashioned idea of driving a steam turbine.
The aim is to achieve "ignition" of the fuel for which Nif is named - a self-sustaining fusion reaction that would far surpass breakeven.
Nif's director Ed Moses told the meeting that ignition was drawing ever nearer.
"Our goal is to have ignition within the next couple of years," he said.
"We've done fusion at fairly high levels already. Even on Sunday night, we did the highest fusion yield that has ever been done."
Dr Moses said that a single shot from the Nif's laser - the largest in the world - created a million billion neutrons and produced for a tiny fraction of a second more power than the world was consuming.
But for ignition, that number would need to rise by about a factor of 1,000.
The UK leads the High-Power Laser Energy Research (Hiper), a pan-European project begun in 2005 to move laser fusion technology toward a commercial plant.
"We recognised several years ago with Nif... and the ignition that was likely to occur, that the profile of fusion would be raised," said John Collier, the director of Hiper.
"We were thinking: 'what would be a way forward, how could Europe define a strategic route for laser power production to take advantage of these developments?' And that was the kernel of Hiper."
Both Hiper and Life, a similar effort at Nif, estimate that a functioning laser power plant would need to cycle through more than 10 fuel pellets each second - a million each day. Nif, since its completion in 2009, has undertaken only 305 such shots in its quest for ignition.
Professor Collier said the technological challenges that presented were incredible opportunities.
"The BMW plant in Oxford is producing one Mini a minute - you think of the complexity of that and you wouldn't think that's possible," he said.
"But these are tractable things; Lego bricks, bullets - these things are made in huge quantities and there are huge intellectual property opportunities for those people, those industries that get in."
http://www.bbc.co.uk/news/science-environment-14842720 |
|
| Back to top |
|
 |
rynner2 What a Cad! Great Old One Joined: 13 Dec 2008 Total posts: 21365 Location: Under the moon Gender: Male |
Posted: 07-08-2013 08:32 Post subject: |
|
|
|
'Critical phase' for Iter fusion dream
By David Shukman, Science editor, BBC News
The world's largest bid to harness the power of fusion has entered a "critical" phase in southern France.
The Iter project at Cadarache in Provence is receiving the first of about one million components for its experimental reactor.
Dogged by massive cost rises and long delays, building work is currently nearly two years behind schedule.
The construction of the key building has even been altered to allow for the late delivery of key components.
"We're not hiding anything - it's incredibly frustrating," David Campbell, a deputy director, told BBC News.
"Now we're doing everything we can to recover as much time as possible.
"The project is inspiring enough to give you the energy to carry on - we'd all like to see fusion energy as soon as possible."
After initial design problems and early difficulties co-ordinating this unique international project, there is now more confidence about the timetable.
Since the 1950s, fusion has offered the dream of almost limitless energy - copying the fireball process that powers the Sun - fuelled by two readily available forms of hydrogen.
The attraction is a combination of cheap fuel, relatively little radioactive waste and no emissions of greenhouse gases.
But the technical challenges of not only handling such an extreme process but also designing ways of extracting energy from it have always been immense.
In fact, fusion has long been described as so difficult to achieve that it's always been touted as being "30 years away".
Now the Iter reactor will put that to the test. Known as a "tokamak", it is based on the design of Jet, a European pilot project at Culham in Oxfordshire.
It will involve creating a plasma of superheated gas reaching temperatures of more than 200 million C - conditions hot enough to force deuterium and tritium atoms to fuse together and release energy.
The whole process will take place inside a giant magnetic field in the shape of a ring - the only way such extreme heat can be contained.
The plant at JET has managed to achieve fusion reactions in very short bursts but required the use of more power than it was able to produce.
The reactor at Iter is on a much larger scale and is designed to generate 10 times more power - 500 MW - than it will consume.
Iter brings together the scientific and political weight of governments representing more than half the world's population - including the European Union, which is supporting nearly half the cost of the project, together with China, India, Japan, Russia, South Korea and the United States.
Contributions are mainly "in kind" rather than in cash with, for example, the EU providing all the buildings and infrastructure - which is why an exact figure for cost is not available. The rough overall budget is described as £13bn or 15bn euros.
But the novel structure of Iter has itself caused friction and delays, especially in the early days.
Each partner first had to set up a domestic "agency" to handle the procurement of components within each member country, and there have been complications with import duties and taxes.
Further delay crept in with disputes over access to manufacturing sites in partner countries. Because each part has to meet extremely high specifications, inspectors from Iter and the French nuclear authorities have had to negotiate visits to companies not used to outside scrutiny.
The result is that although a timeline for the delivery of the key elements has been agreed, there's a recognition that more hold-ups are almost inevitable.
The main building to house the tokamak has been adjusted to leave gaps in its sides so that late components can be added without too much disruption.
The route from the ports to the construction site has had to be improved to handle huge components weighing up to 600 tonnes, but this work too has been slower than hoped. A trial convoy originally scheduled for last January has slipped to this coming September.
Under an initial plan, it had once been hoped to achieve the first plasma by the middle of the last decade.
Then, after a redesign, a new deadline of November 2020 was set but that too is now in doubt. Managers say they are doubling shifts to accelerate the pace of construction. It's thought that even a start date during 2021 may be challenging.
The man in charge of coordinating the assembly of the reactor is Ken Blackler.
"We've now started for real," he told me. "Industrial manufacturing is now under way so the timescale is much more certain - many technical challenges have been solved.
"But Iter is incredibly complicated. The pieces are being made all around the world - they'll be shipped here.
"We'll have to orchestrate their arrival and build them step by step so everything will have to arrive in the right order - it's really a critical point."
While one major concern is the arrival sequence of major components, another is that the components themselves are of sufficiently high quality for the system to function.
The 28 magnets that will create the field containing the plasma have to be machined to a very demanding level of accuracy. And each part must be structurally sound and then welded together to ensure a totally tight vacuum - without which the plasma cannot be maintained. A single fault or weakness could jeopardise the entire project.
Assuming Iter does succeed in proving that fusion can produce more power than it consumes, the next step will be for the international partners to follow up with a technology demonstration project - a test-bed for the components and systems needed for a commercial reactor.
Ironically, the greater the progress, the more apparent becomes the scale of the challenge of devising a fusion reactor that will be ready for market.
At a conference in Belgium last September, I asked a panel of experts when the first commercially-available fusion reactor might generate power for the grid.
A few said that could happen within 40 years but most said it would take another 50 or even 60 years. The fusion dream has never been worked on so vigorously. But turning it into reality is much more than 30 years away.
http://www.bbc.co.uk/news/science-environment-23408073
There are videos, graphics and sidebars on the page to fill in the details. |
|
| Back to top |
|
 |
rynner2 What a Cad! Great Old One Joined: 13 Dec 2008 Total posts: 21365 Location: Under the moon Gender: Male |
Posted: 08-10-2013 07:52 Post subject: |
|
|
|
Nuclear fusion milestone passed at US lab
By Paul Rincon, Science Editor, BBC News website
Researchers at a US lab have passed a crucial milestone on the way to their ultimate goal of achieving self-sustaining nuclear fusion.
Harnessing fusion - the process that powers the Sun - could provide an unlimited and cheap source of energy.
But to be viable, fusion power plants would have to produce more energy than they consume, which has proven elusive.
Now, a breakthrough by scientists at the National Ignition Facility (NIF) could boost hopes of scaling up fusion.
NIF, based at Livermore in California, uses 192 beams from the world's most powerful laser to heat and compress a small pellet of hydrogen fuel to the point where nuclear fusion reactions take place.
The BBC understands that during an experiment in late September, the amount of energy released through the fusion reaction exceeded the amount of energy being absorbed by the fuel - the first time this had been achieved at any fusion facility in the world.
This is a step short of the lab's stated goal of "ignition", where nuclear fusion generates as much energy as the lasers supply. This is because known "inefficiencies" in different parts of the system mean not all the energy supplied through the laser is delivered to the fuel.
But the latest achievement has been described as the single most meaningful step for fusion in recent years, and demonstrates NIF is well on its way towards the coveted target of ignition and self-sustaining fusion.
For half a century, researchers have strived for controlled nuclear fusion and been disappointed. It was hoped that NIF would provide the breakthrough fusion research needed.
In 2009, NIF officials announced an aim to demonstrate nuclear fusion producing net energy by 30 September 2012. But unexpected technical problems ensured the deadline came and went; the fusion output was less than had originally been predicted by mathematical models.
Soon after, the $3.5bn facility shifted focus, cutting the amount of time spent on fusion versus nuclear weapons research - which was part of the lab's original mission.
However, the latest experiments agree well with predictions of energy output, which will provide a welcome boost to ignition research at NIF, as well as encouragement to advocates of fusion energy in general.
It is markedly different from current nuclear power, which operates through splitting atoms - fission - rather than squashing them together in fusion.
NIF, based at the Lawrence Livermore National Laboratory, is one of several projects around the world aimed at harnessing fusion. They include the multi-billion-euro ITER facility, currently under construction in Cadarache, France.
However, ITER will take a different approach to the laser-driven fusion at NIF; the Cadarache facility will use magnetic fields to contain the hot fusion fuel - a concept known as magnetic confinement.
http://www.bbc.co.uk/news/science-environment-24429621 |
|
| Back to top |
|
 |
|
|
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum
|
Powered by phpBB © 2001, 2005 phpBB Group
|